The Local Character Expansion near a Tame, Semisimple Element

نویسندگان

  • JEFFREY D. ADLER
  • JONATHAN KORMAN
چکیده

Consider the character of an irreducible admissible representation of a p-adic reductive group. The Harish-Chandra-Howe local expansion expresses this character near a semisimple element as a linear combination of Fourier transforms of nilpotent orbital integrals. Under mild hypotheses, we describe an explicit region on which the local character expansion is valid. We assume neither that the group is connected, nor that the underlying field has characteristic zero. 0. Introduction Let G denote the group of k-points of a reductive k-group G, where k is a nonarchimedean local field. To simplify the present discussion, assume for now that G is connected and that k has characteristic zero. Let (π, V ) denote an irreducible admissible representation of G. Let dg denote a fixed Haar measure on G, and let C c (G) denote the space of complex-valued, locally constant, compactly supported functions on G. The distribution character Θπ of π is the map C ∞ c (G) → C given by Θπ(f) := tr π(f), where π(f) is the (finite-rank) operator on V given by π(f)v := ∫ G f(g)π(g)v dg. From Howe [12] and Harish-Chandra [9], the distribution Θπ is represented by a locally constant function on the set of regular semisimple elements in G. We will denote this function also by Θπ. For any semisimple γ ∈ G, the local character expansion about γ (see [11] and [10]) is the identity Θπ(γ e(Y )) = ∑

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE LOCAL CHARACTER EXPANSION NEAR A TAME, SEMISIMPLE ELEMENT By JEFFREY D. ADLER and JONATHAN KORMAN

Consider the character of an irreducible admissible representation of a p-adic reductive group. The Harish-Chandra-Howe local expansion expresses this character near a semisimple element as a linear combination of Fourier transforms of nilpotent orbital integrals. Under mild hypotheses, we describe an explicit region on which the local character expansion is valid. We assume neither that the gr...

متن کامل

A characterization of semisimple local system by tame pure imaginary pluri-harmonic metric

Let L be a local system on a smooth quasi projective variety over C . We see that L is semisimple if and only if there exists a tame pure imaginary pluri-harmonic metric on L. Although it is a rather minor refinement of a result of Jost and Zuo, it is significant for the study of harmonic bundles and pure twistor D-modules. As one of the application, we show that the semisimplicity of local sys...

متن کامل

On the Local Constancy of Characters

The character of an irreducible admissible representation of a p-adic reductive group is known to be a constant function in some neighborhood of any regular semisimple element γ in the group. Under certain mild restrictions on γ, we give an explicit description of a neighborhood of γ on which the character is constant.

متن کامل

The Chern character of the Verlinde bundle overMg,n

We prove an explicit formula for the total Chern character of the Verlinde bundle over Mg,n in terms of tautological classes. The Chern characters of the Verlinde bundles define a semisimple CohFT (the ranks, given by the Verlinde formula, determine a semisimple fusion algebra). According to Teleman’s classification of semisimple CohFTs, there exists an element of Givental’s group transforming ...

متن کامل

Tame Loci of Generalized Local Cohomology Modules

Let $M$ and $N$ be two finitely generated graded modules over a standard graded Noetherian ring $R=bigoplus_{ngeq 0} R_n$. In this paper we show that if $R_{0}$ is semi-local of dimension $leq 2$ then, the set $hbox{Ass}_{R_{0}}Big(H^{i}_{R_{+}}(M,N)_{n}Big)$ is asymptotically stable for $nrightarrow -infty$ in some special cases. Also, we study the torsion-freeness of graded generalized local ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005